
Memory and C++
debugging at Electronic Arts
By Scott Wardle

1

Introduction

´ Memory interfaces and debug tools for C++ games

´ 2000 (PS2) embedded C style

´ 2005 (Xbox 360, PS3) Interface programming,
EASTL

´ Now (PS4, Xbox One) 64 bit address spaces

´ Our Current Tools:

´ How all of our debugging systems work together

2

About me

´ Scott Wardle,

´ 20+ years Game Dev

´ Solving problems through visualization and
drawing pictures

´ I am also badly dyslexic, so please note spelling
mistakes and inform me later after the
presentation J

3

Vocabulary �

´ Allocators, Arena, Heaps
´ Allocators (an object or interface that can alloc

and free)
´ Arena (a set of address ranges controlled by one

allocator)
´ From Arena find an Allocator
´ From Allocator find an Arena
´ Heap ~= Allocator + Arena

4

C style 2000s
Overview

´ Year ~2000: PS2 32M ram

´ Most people are using C++ compilers

´ STL is not used

´ No virtual memory

´ Nearly no OS

´ Similar to embedded systems

5

C style 2000s
Interfaces for speed

´ Macro per class

´ #define NEW_DELETE_OPERATORS(debug_name)
´ Good for fixed sized pools or slabs of objects

class CollisionChooser {

public:

 NEW_DELETE_OPERATORS(CollisionChooser)

 …

};

6

C style 2000s
Interfaces for debug
´ Global new

´ void* operator new(size_t size, const char* debug_name,
int flags=MB_LOW)

Allocated Block Header footer

Allocated Block Header footer

Allocated Block Header footer

7

Debug name and
sentinel stored in
footer

Note debug_name split into
“category::alloc” example:
“render::player”,
“gameplay::physicsmesh”

C style 2000s
Allocation technology

´ Almost all memory is in one heap

´ Well we did have a simple small block allocator

´ We had to work hard at defragmentation

Small
Block

Allocator

General
Allocator

Low Memory High Memory

Load
compressed

Texture 0
Texture 0 Alloc

Mesh

Decompress

8

2005 Overview�
´ 2004 - Xbox 360, PS3 (512M ram)

´ Virtual memory! - NO HDD L, No GPU support,
32 bit

´ All consoles have multiple CPUs
´  (Not just for Sega Saturn)

´ The main changes for 2005:

´ Support for multiple allocators

´ Better tracking and logging tools

´ Stomp allocator!!

´ Memory tracking with EASTL

9

2005 Support for Multiple Allocator

SQLQuery *NewQuery(ICoreAllocator* a) {
 return CORE_NEW(a, "sql", MEM_LOW) SQLQuery(a);
}

void DeleteQuery(ICoreAllocator* a, SQLQuery *sql){

 CORE_DELETE(a, sql);
}

Calls ~SQLQuery()
not delete!!

Polymorphic Allocator

10

2005 Organizing Heaps/Arenas�11

Render
SBA

Render
Heap

Gameplay
SBA

Gameplay
Heap

UI
SBA

UI
Heap

Small

Medium

Large

Static Level Global
Sub

Level Time

Size

Team

A mix of time and size gives good defragmentation properties.
Organizing by team fragments heaps but easy to set blame.
So for my team we use all of these to varying degrees.

Temp

Medium

Large

2005 Team Based Heaps/Arenas vs
Team Based Categories�

12

Small Render 0 Render 1
R
3 Render 2 SIM0 SIM1

Memory Corruption between teams sucks

Categories are a
way to tags
allocations so you
can budget them
together.

S
2

Fragmentation between
teams is hard. Who to
blame when you are
out of memory?

SIM3

Debug Heap Normal Heap

2005 Better Tracking and Logging

Allocated
Block H F

Allocated
Block H F

Allocated
Block H F

Only sentinel
stored in footer

Category::
Alloc Name Address Size

Category::
Alloc Name Address Size

Category::
Alloc Name Address Size

Memory
Logging
To Disk

Hash Key

Alloc

Alloc

Alloc Free

Tracking live allocations in a
separate heap.

13

Memory
Logging or
tracing system

2005 Logging 14

Select Time

Start
of time

End of
time

Category/
Heap

Alloc
Name

Alloc
Count

Alloc
Size

delta
between
2 times

whole
snapshot

of memory

2005 Arena Block View 15

Purple Presentation

Green Systems

Grey Free

Yellow selected block

Info about
selected

block

2005 Stomp Allocator!!

´ Stomp Allocator – so good it is worth it’s own
slide

´ Lots of memory, 4k per alloc

Page 4KiB
Read/Write

Page 4KiB
Read Only

(Or not mapped)

Alloc
512 bytes

Crash!

No Crash but bad
Use sentinel? Or Flip

16

2005 Ref Counted Pointers

´ Add a debug system for ref counts is hard:

´ A Tracking system would be like garbage collector…

´ A Logging system would generate even more data…

Sim
Player

Render
Player

particle
system

Collision
Mesh

Oh No
memory

leak!

shared_ptr
are useful !!

but use
unique_ptr
or bare pointers
for easy life times

17

2005 EASTL

´ A 2010 version of EASTL is available now from webkit.
´ Why EASTL

´ STL allocators are painful to work with
´ Intrusive containers, Ring Buffers, etc…
´ Superior readability and performance
´ Memory is Allocated in empty versions of some STL

objects
´ Etc…

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4526.pdf

18

0

20

40

60

80

100

120

Tests EASTL Slower # Tests Even # Tests EASTL Faster

N
U

M
 T

ES
TS

EASTL vs vc++ Dinkumw
optimized

vc 2015

EASTL faster for optimized code

EASTL
Slower

10

Even
107

EASTL
Faster

71

EASTL is often a little
faster. In 71 out of
188 tests.

•  Faster means 1.3x

or better.

•  Slower means 0.8x

as quick or slower

19

0

20

40

60

80

100

120

140

160

180

Tests EASTL Slower # Tests Even # Tests EASTL Faster

N
U

M
 T

ES
TS

EASTL vs vc++ Dinkumw
debug

vc 2015 debug

EASTL MUCH faster for debug code

EASTL
Faster

164

Even
19

EASTL
Slower

2

20

The same 188 tests
complied in debug

Open sourcing EASTL

´ EA is looking to open source EASTL

´ Roberto Parolin will be taking pull requests

´ Coming soon to:

´ https://github.com/electronicarts

´ Technical details announce later to SG14 group

21

2005 EASTL Memory tracking problems
22

´ EASTL’s allocator were painful to track every object

´ You need to make a new type

typedef eastl::vector<int,EASTLICoreAllocator>
MyVec;

´ Then pass in a defaulted parameter

ICoreAllocator* alloc = GetGameplayAllocator();

MyVec vec(alloc);

´ Default parameters at the end so hard to enforce use.

unordered_map (size_type n = 1000

 const hasher& hf = hasher(),

 const key_equal& eql = key_equal(),

 const allocator_type& alloc = allocator_type());

´ Worked on all EASTL types but clumsy

EA::ICoreAllocator* alloc = GetRendAllocator();

vec.get_allocator().set_allocator(alloc);

23
2005 EASTL Memory tracking problems

´ At first we hacked EASTL to make it easier

vector
v(eastl::allocator("AI::Piano::Input"))

´ But this meant our team couldn’t share code... with
other teams

´ (Accessing allocator by name was a bad idea
anyways)

24
2005 EASTL Memory tracking problems

´ We also ran into type erasure problems

typedef vector<int, EASTLICoreAllocator> MyVec;

typedef vector<int> YourVec;

MyVec myVec;

YourVec yourVec;

myVec = yourVec; // what should happen here…

´ ERROR: no operator found which takes a right-hand operand
of type 'YourVec' (or there is no acceptable conversion)

25
2005 EASTL Memory tracking problems

2005 “Good?” EASTL usage with EASTLICA

´ Wrap EASTL with EASTLICA to force usage of polymorphic
allocator

template <typename T>

class String : public base_string<T, EASTLICoreAllocator>{

 String(ICoreAllocator *alloc, const char*name=“Str")

 : basic_string<char, EASTLICoreAllocator>(

 EASTLICoreAllocator(name, alloc))

 …

};

ICoreAllocator* alloc = GetStringAllocator();

EASTLICA::String str(alloc);

26

´ Macro used to implement STL like types for each large system.

#define EASTLICA_VECTOR(EASTLICA_TYPE,
 GET_DEFAULT_ALLOC, ALLOC_NAME)\

template< typename T> class EASTLICA_TYPE : public
EASTLICA::Vector<T>

´ Using Macro to create a STL-like types for a large system

EASTLICA_STRING(CareerModeString,

 CareerMode::GetStringDefaultAllocator(), ”CareerStr");

27

2005 “Good?” EASTL usage with EASTLICA

28

2005 “Good?” EASTL usage with EASTLICA

´ This fixed our type type erasure problems.

CareerModeString str;

LocalizedString lstr = getStrId(42);

str = lstr; // woot no compile error! Both use same allocator.

´ This also fixed the ownership issues.

´ CareerMode owns its strings and localization does not own all
strings in the game.

´ Allocators are copied sometimes but not always.

�

Today’s Memory System�

´ PS4, Xbox One – Today 8GB (5GB for the game)

´ GPU memory does not have to be linearly mapped.
(GPU assets are still special case however.)

´ 64 bit virtual address space and a HDD to swap to.

´ The big changes these days:

´ Debug Memory System

´ EASTL Memory Tracking

´ New debug tools

29

Today’s Debug Memory System

´ Alloc debug names slowly die

´ void* operator new(size_t size, EA::ICoreAllocator* alloc)

´ The old interface exists. But uses scopes.

´ Scopes are everywhere

´ Resource and Asset Names

´ Alloc Name, Allocator, Category, and Call stacks

´ FB_MEMORYTRACKER_SCOPE(data->debugNames[i]);

´ FB_ALLOC_RES_SCOPE(data->debugNames[i]);

´ *(This does mean more thread local storage use)

30

Today’s EASTL Memory Tracking

´ Everyone is still doing this:

class Team

{

int teamid;

eastl::vector<player> players;

}

Team*home = new (allocator) Team;

´ However EASTL is still a problem

31

EASTL use parent arena by default tracking
Gameplay Arena

Team Home
(One Allocation)

int teamId;
vector<player> players;

allocator (0 bytes maybe)
first
last
end

Check What
Arena parent

is in

Player 1

Allocate Child
using parent

arena
as parameter

Player 2
Player 3

Don’t have to use
the same arena for

child

IE: use gameplay’s
small block
allocator

not general
allocator

32

´ Problems

´ It does take some CPU time.

´ What about objects on the stack?

´ What about move operators?
´ Object in gameplay arena and move it to

rendering. Only the parent object will move.

´ “You made it you own it” logic works 80% of the
time.

´ For other cases use EASTLICA patterns.

´ (Systems that are factory for other systems.)

33
EASTL use parent arena by default tracking

Today’s Debugging Tool DeltaViewer

´ History lesson over! Let’s look at today’s tools!

´ DeltaViewer displays a session of data.

´ A session is one run of the game

´ This data is sent from console to a http server on the SE’s or
QA’s computer

´ The data is stored in tables

´ These tables can be joined into views

34

DeltaViewer�

´ Some popular views are:

´ TTY events debugging (Trace Log)

´ IO Load profiler (Turbo Tuner)

´ Frame rate and Job thread profiler (Performance Timer)

´ Memory Investigator, reviews memory leaks and
changes over time

´ Memory Categorization groups allocations at a given
time

35

TTY events debugging (Trace Log)

Level 1

Level 2

36

IO Load profiler (Turbo Tuner)

´ Bundle is a group of
files that have to be
loaded to move the
game to the next
level or sub level.

´ Chunks are blocks of
data that are
steamed in. Like
movies or music or
terrain in open world
games.

Bundles

Chunks

37

Timeline�

IO Load profiler (Turbo Tuner)
 Each Printf on the selected channel

gets an event line so you can undersand
when it happened

38

IO Load profiler (Turbo Tuner)

Loading Level 1 Playing Level 1 Loading Level 2 Playing Level 2

Why do I continue
to load bundle
while playing

39

IO Load profiler (Turbo Tuner)

Name of
the Bundle

Hover

40

Frame rate and Job thread profiler
(Performance Timer)

Why wait for rendering

Selected Frames in blue

Selected Frames
Show Up here

Expensive
Frame

41

Each Rectangle is a Frame
The height is the time in ms

of this frame

Frames Expensive frame

Start Frame End Frame

Job

Functions Calls
From Job

Loading profiler + Frame rate profiler

´ We can combine views

´ Why?

´ Loading is about more then disk performance

´ Decompression

´ Stamping one texture on with a font

´ Recompressing and loading into VRAM

´ Loading is often limited by CPU

42

Add noisy screen from 4k screen�

CPU1

CPU2

CPU3
CPU4

GPU
CPU5

 Selected time/rames One BIG Frame

Selected
time/frames

43

CPU0

Turbo
Tuner

Frame
Rates

View of
CPUs
and
Jobs

Use Memory Investigator for leaks

´ Finding memory leaks

´ How to find memory leaks in most games. Find:

A. Start of loading 1st level

B. End of loading 1st level

C. End of Loading 2nd level

´ (Growing objects look like leaks but often after a few levels
this goes away, wish we had realloc)
Capture allocs

between A and B
By C it should be

free

Alloc at
T1

Not Free at
T2 LEAK!

44

A B C

Scope

Full Call stack of
Selected item

Asset
Name

Ptr
&

Size

Call
Stack

ID

Capture
Allocs
Here

Should
Be Free
Before
Here

List of
leaks!
BAD!

Different mode like growth
or memory leaks

Turbo
Tuner

Diagram of the mode

45

Memory Categorization

Before After

These times are often found
using turbo tuner

46
Scrub to another
time

Memory Categorization

Lots of small allocs 512 bytes or smaller

big allocs 2M or
greater take the
space

47

Memory Categorization

•  Rendering
(procedural
textures and
other buffers
used to draw
the scene)

•  Content,
meshes,
textures and
entities that
tie these
together

the code is 50MiB
small on this scale

48

Summary

´ DeltaViewer

´ Has many views:

´ TTY Event Timing

´ IO and Load times

´ Jobs and threads

´ Memory changes

´ We have a lot of work to do to ship the game I am on J

´ (Good thing I have one year left)

49

Summary

´ EASTL and STL allocators

´ Hard to track

´ Use the “if you made it you own it rule”

´ Use the “this” pointer of allocator as a parameter for your
allocators

´ EASTLICA

´ Good at enforcing allocator use for a large group of SEs

´ Helped with type erasure problems in stl::string and other
classes. MyString does not work with YourString

50

Summary

´ Games in general

´ Most memory is used by large allocation

´ Most memory is mostly content (meshes and
textures) or rendering

´ There are a large number of small allocations.

´ Small block allocators, pool systems, slab allocators
are a good idea

´ Stomp Allocator are great (Use memory map to find
who stomped you…)

51

Questions?�52

